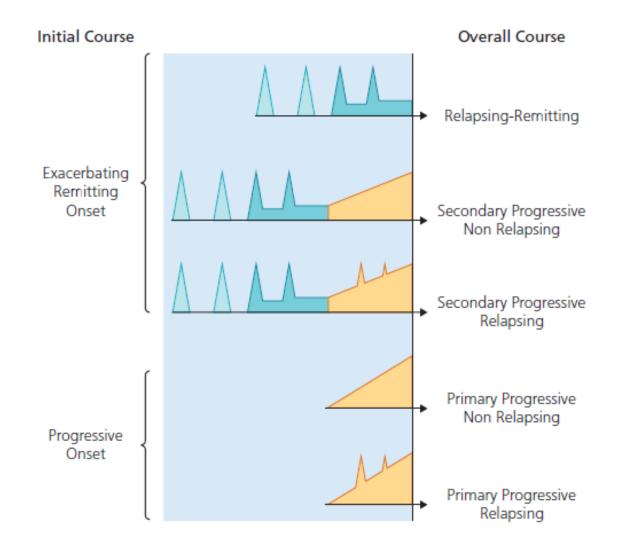


Institut national de la santé et de la recherche médicale

Faut-il traiter toutes les formes progressives de SEP ? OUI

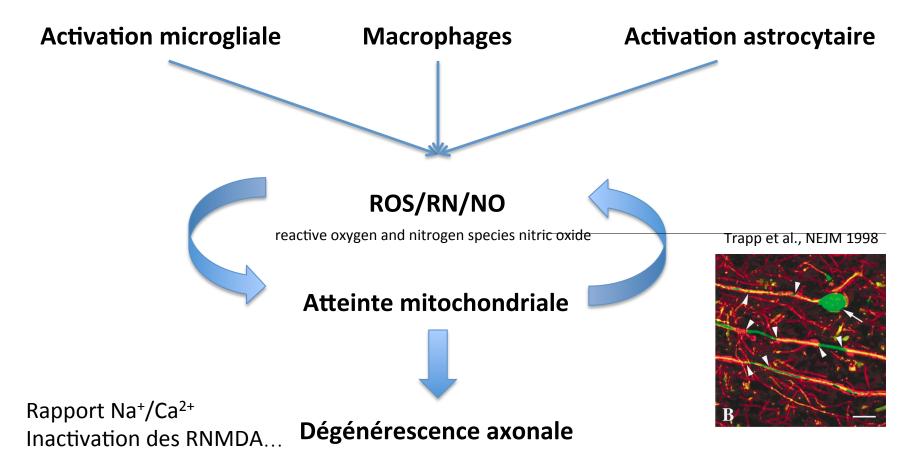
Nicolas Collongues MCU-PH CHU de Strasbourg Unité BMNST INSERM 1119 CIC INSERM 1434


Liens d'intérêt

- Nicolas Collongues
 - Honoraires pour consulting et présentations de la part de : Biogen, Almirall, Novartis, Merck Serono, LFB, Teva Pharma, Sanofi-Genzyme, Roche,
 - Membre du board éditorial du journal de la Ligue
 Française contre la Sclérose en plaques

Plan

- La SEP progressive
- Les « anciens » traitements de fond
- Les « nouveaux » traitements de fond
- Conclusion


Les formes progressives de SEP

McAlpine's Multiple Sclerosis. 4th Edition 2005

Le scénario proposé

Atteinte préférentielle de la substance grise Autonomisation et Compartimentalisation de la réponse inflammatoire: LB++

Les immunomodulateurs

	SEP-RR	SEP-SP
Interféron β-1a i.m. (Avonex®)	Au moins 2 poussées sur les 3 dernières années	-
Interféron β-1b s.c. (Betaferon®)	Au moins 2 poussées sur les 2 dernières années	Évoluant avec poussées
Acétate de glatiramère s.c. (Copaxone®)	Au moins 2 poussées sur les 2 dernières années	_
Interféron β-1a s.c. (Rebif®)	Au moins 2 poussées sur les 2 dernières années	Évoluant avec poussées

La mitoxantrone

ARTICLES

Mitoxantrone in progressive multiple sclerosis: a placebocontrolled, double-blind, randomised, multicentre trial

Hans-Peter Hartung, Richard Gonsette, Nikolaus König, Hubert Kwiecinski, Andreas Guseo, Sean P Morrissey, Hilmar Krapf, Thomas Zwingers, and the Mitoxantrone in Multiple Sclerosis Study Group (MIMS)*

	Placebo	12 mg/m ² mitoxantrone	Mann-Whitney difference (95% Cl)	p*
Variable				
EDSS change				
(last value minus baseline)				
Mean (SD)	0.23 (1.01)	-0.13 (0.90)	0.24 (0.04 to 0.44)	0.0194†
Median (range)	0.5 (-3 to 2)	0 (-2·5 to 2·5)		
Ambulation index change				
(last value minus baseline)				
Mean (SD)	0.77 (1.26)	0.30 (1.24)	0.21 (0.02 to 0.40)	0.0306†
Median (range)	0 (-1 to 5)	0 (–2 to 5)		
Number of treated relapses				
Adjusted total in group	76.77	24.08	0.39 (0.18 to 0.59)	0.0002+
Median (range) per patient	1 (0 to 5)	0 (0 to 2)		-
Time to first treated relapse			0.44 (0.20 to 0.69)	0.0004‡
Median (months)	14.19	Not reached within 24 months		
Lowest quartile (months)	6.7	20.4		
Change in SNS				
(last value minus baseline)				
Mean (SD)	0.77 (6.79)	-1.07 (8.61)	0.23 (0.03 to 0.43)	0.0268†
Median (range)	0 (-13 to 25)	-1·5 (-19 to 35)		
Global difference				
(Wei-Lachin test)			0.30 (0.17 to 0.44)	<0.0001

SNS=standardised neurological status. *Two-sided, placebo vs mitoxantrone 12 mg/m². †Wilcoxon-Mann-Whitney test. ‡Log-rank test.

Table 2: Primary efficacy criterion and overview of primary efficacy variables

Le cyclophosphamide

	rological
Neurological	Sciences
Sciences	
www.elsevier.com/locate/jn	5

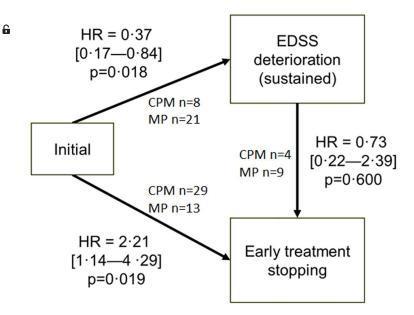
Journal of the Neurological Sciences 218 (2004) 73-77

Treatment of progressive forms of multiple sclerosis by cyclophosphamide: a cohort study of 490 patients

H. Zephir^a, J. de Seze^{a,*}, A. Duhamel^b, M. Debouverie^c, P. Hautecoeur^d, C. Lebrun^e, I. Malikova^f, J. Pelletier^f, O. Sénéchal^d, P. Vermersch^a

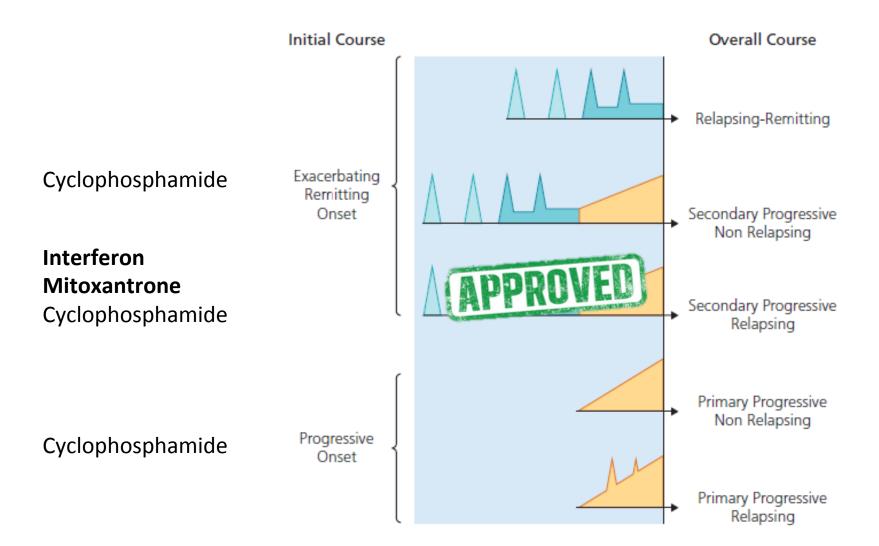
Table 1

progressive (SP) multi	PPMS patients	SPMS Check for patients	All MS patients
Number of patients	128 (26.1%)	362 (73.9%)	490 (100%)
Evolution at M6		G	
Stabilised patients	92 (76%)	288 (80%)	380 (79%)
Improved patients	20 (16.5%)	37 (10.3%)	57 (11.8%)
Worsened patients	9 (7.5%)	35 (9.7%)	44 (9.2%)
Evolution at M12			
Stabilised patients	68 (56.2%)	220 (63.6%)	288 (61.7%)
Improved patients	21 (17.4%)	52 (15%)	73 (15.6%)
Worsened patients	32 (26.4%)	74 (21.4%)	106 (22.7%)


The response to cyclophosphamide at M6 and M12 was not significantly different between the two progressive forms of the disease (p=0.13 and p=0.26, respectively).

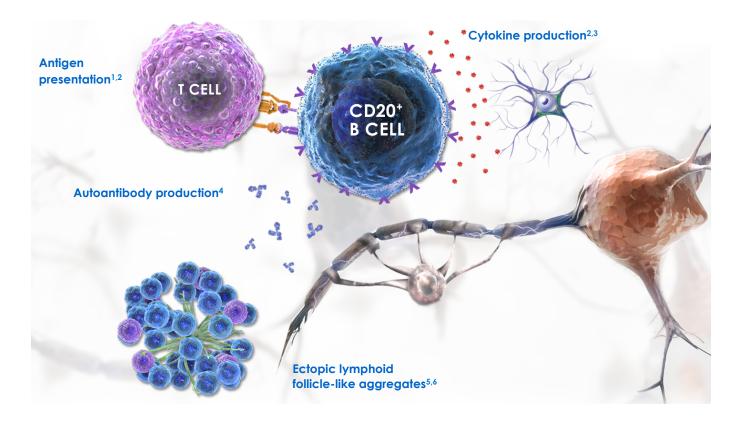
PLOS ONE

RESEARCH ARTICLE


Double-Blind Controlled Randomized Trial of Cyclophosphamide versus Methylprednisolone in Secondary Progressive Multiple Sclerosis

Bruno Brochet^{1,2*}, Mathilde S. A. Deloire¹, Paul Perez³, Timothé Loock¹, Louise Baschet³, ouverie⁴, Sophie Pittion⁴, Jean-Christophe Ouallet¹, Pierre Clavelou⁵, Jérôme de clas Collongues⁶, Patrick Vermersch⁷, Hélène Zéphir⁷, Giovanni Castelnovo⁸, auge⁹, Christine Lebrun¹⁰, Mikael Cohen¹⁰, Aurélie Ruet^{1,2}, PROMESS study investigators¹¹

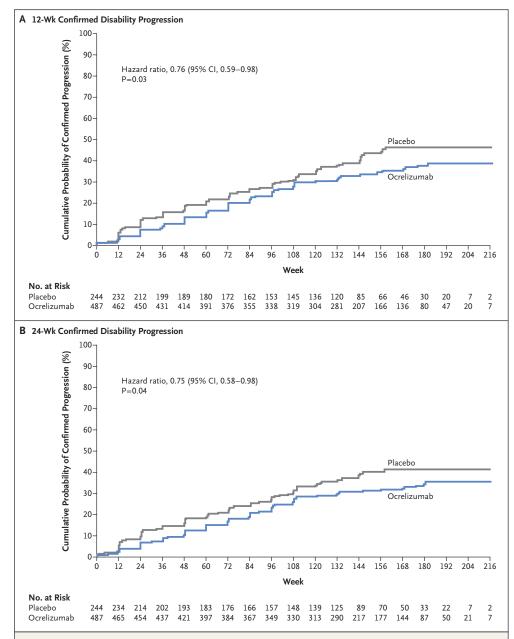
Brochet et al., PlosONE 2017


Les formes progressives de SEP

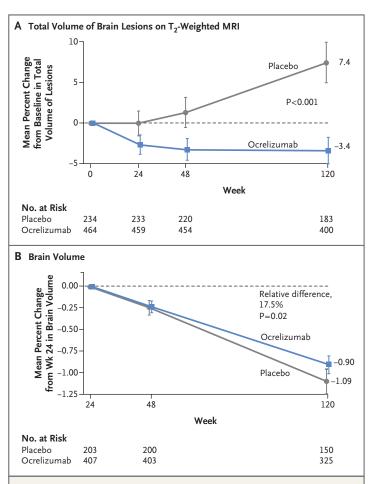
McAlpine's Multiple Sclerosis. 4th Edition 2005

L'ocrelizumab

 AMM et ATU depuis janvier 2018 dans les formes PP



Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis


X. Montalban, S.L. Hauser, L. Kappos, D.L. Arnold, A. Bar-Or, G. Comi, J. de Seze, G. Giovannoni, H.-P. Hartung,
B. Hemmer, F. Lublin, K.W. Rammohan, K. Selmaj, A. Traboulsee, A. Sauter, D. Masterman, P. Fontoura,
S. Belachew, H. Garren, N. Mairon, P. Chin, and J.S. Wolinsky, for the ORATORIO Clinical Investigators*

- Phase 3 : ORATORIO
 - Randomisée, double aveugle, vs placebo
 - Ratio 2:1 ; N = 488 vs 244
 - Age : 18-60 [moy : 45 ans]
 - EDSS 3-6.5 [méd : 4.5]
 - Délai médian depuis progression : 6 ans
 - Critère principal : progression de l'EDSS confirmé à 3 mois
 - Suivi : 2 ans

Figure 1. Primary and Key Secondary Clinical Outcomes (Intention-to-Treat Population).

Panel A (primary end point) and Panel B (first secondary end point) show the cumulative probability of clinical disability progression (as defined by an increase in the score on the Expanded Disability Status Scale) that was confirmed after at least 12 weeks and at least 24 weeks, respectively, in time-to-event analyses. P values were calculated with the use of the log-rank test.

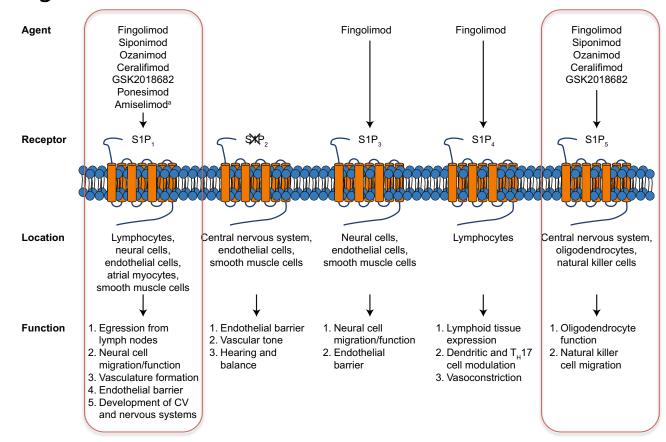
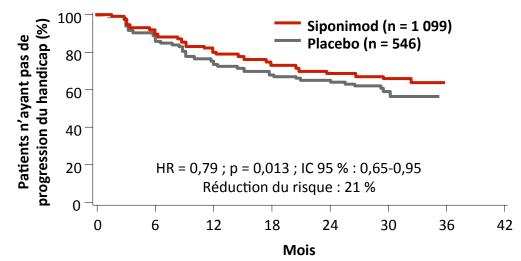


Figure 2. MRI End Points (Intention-to-Treat Population).

Panel A shows the percent change in the total volume of brain lesions on T_2 -weighted MRI from baseline to week 120 (third secondary end point). The P value was calculated with the use of a ranked analysis of covariance. Panel B shows the percent change on MRI scans in brain volume from week 24 to week 120 (fourth secondary end point). The P value was calculated with the use of a mixed-effect model repeated measure (MMRM) approach. I bars indicate 95% confidence intervals.

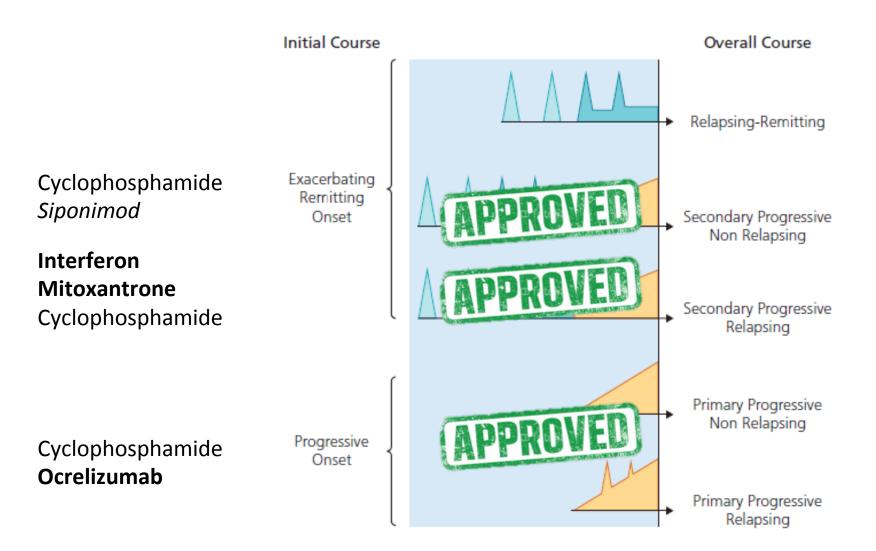
Le siponimod

 Modulateur sélectif des récepteurs S1P₁ et S1P₅, traverse la BHE

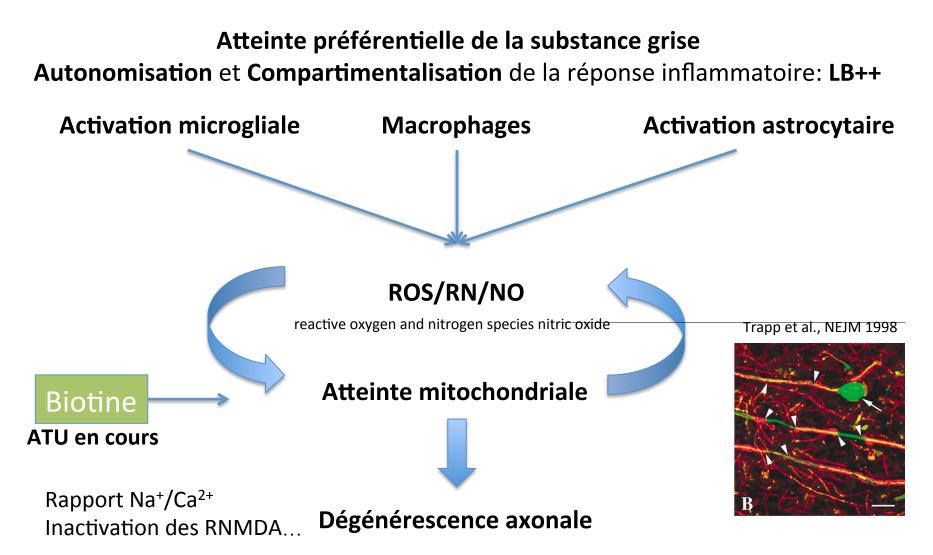


Le siponimod

- Etude de phase 3 : EXPAND
 - SEP SP avec aggravation du handicap
 - Randomisée, double aveugle, vs placebo
 - Ratio 2:1 ; N = 1105 vs 546
 - Age : 18-60 [moy : 48 ans]
 - EDSS 3-6.5 [méd : 6]
 - Délai médian depuis la progression : 4 ans
 - Critère principal : progression de l'EDSS confirmé à 3 mois
 - Suivi : 2 ans


Efficacité

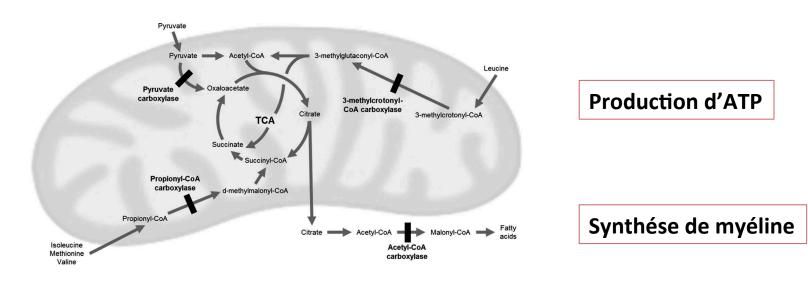
- Critère principal :
 - Réduction statistiquement significative de 21 % du risque de progression de l'EDSS


- Critères secondaires :
 - TW25F non significatif
 - Réduction de 26 % du risque de progression de l'EDSS confirmé à 6 mois (p < 0,05)
 - Réduction significative du risque de poussée surajoutée et d'activité inflammatoire IRM (nouvelles lésions T2 et lésions gado+)
 - Réduction de 23.4 % de l'atrophie cérébrale

Les formes progressives de SEP

McAlpine's Multiple Sclerosis. 4th Edition 2005

Le scénario proposé



Rationnel

MD1003 capable de :

- 1. Augmenter la production d'énergie dans les **neurones** et les **astrocytes**
- 2. Augmenter la production de citrate nécessaire pour la synthèse des lipides
- 3. Activer ACC1 et ACC2, 2 enzymes limitantes pour la synthèse d'AG à longue chaine nécessaire pour la synthèse de myéline par les **oligodendrocytes**

Essai clinique

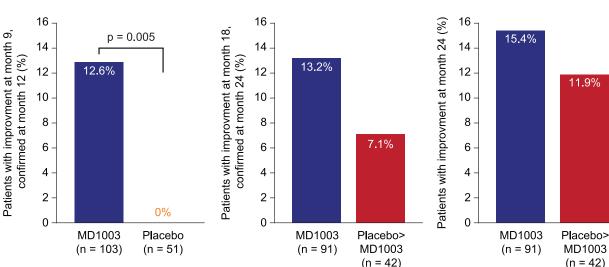


Original Research Paper

MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: A randomised, double-blind, placebo-controlled study

Ayman Tourbah, Christine Lebrun-Frenay, Gilles Edan, Michel Clanet, Caroline Papeix, Sandra Vukusic, Jerome De Sèze, Marc Debouverie, Olivier Gout, Pierre Clavelou, Gilles Defer, David-Axel Laplaud, Thibault Moreau, Pierre Labauge, Bruno Brochet, Frédéric Sedel and Jean Pelletier; on behalf of the MS-SPI study group

Double-blind phase


Extension phase

- Phase 2b/3 •
- 1 dose •
- 1 an de suivi •
- Age 18-60 [moy : 51] ٠
- EDSS 4.5-7 [méd : 6] •

11.9%

MD1003 (n = 42)

Amélioration de l'EDSS • ou du T25FW

Extension phase

Conclusion

- Il faut traiter toutes les formes progressives !
- Déjà plusieurs AMM disponibles :
 - Formes SP avec poussées surajoutées
 - Formes PP de stade précoce (durée et handicap)
 - En approche : SP sans poussée
- Traiter l'inflammation en amont de la dégénérescence
- La question non résolue de l'âge et du handicap
- Biotine et mitochondrie
- Excellent rapport bénéfice/risque de ces produits