

Controverse: quelle imagerie à la phase aiguë d'un AVC ?

Imagerie "minimale"

Pr Tae-Hee Cho

Hôpital Neurologique Fédération Hospitalo-Universitaire IRIS, Hospices Civils de Lyon

CREATIS - Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé CNRS UMR 5220, INSERM U1206, INSA de Lyon, Université de Lyon 1

Bayer, ICOMED, Servier, Sanofi Pasteur MSD, UCB Pharma, TEVA Santé, Sophysa

hémiplégie D, aphasie

Scanner sans injection de pdc 1h10 du début des symptômes

UNV - CHU DE LYON

En 2018

- 510 procédures de revascularisation aiguë dont 318 thrombectomies
- IRM: 81%
- perfusion en IRM: 90% patients avec IRM

Protocole d'Helsinki

délai intrahospitalier médian tPA IV: 20' (14-32)

Six-Minute Magnetic Resonance Imaging Protocol for Evaluation of Acute Ischemic Stroke Pushing the Boundaries

- scanner sans pdc

- angioscanner / perfusion: <1/3 patients

Nael et al. Stroke. 2014;45:1985-1991.

IMAGERIE "MINIMALE" ?

Optionnel

Imagerie de perfusion Angioscanner multiphasique Segmentation du tissu à risque

Optionnel

Imagerie de perfusion Segmentation du tissu à risque

IMAGERIE "MINIMALE" ?

- Imagerie de pe Imagerie minimale = sans perfusion
- Angioscanner multiphasique
- Segmentation du tissu à risque

- 2 x 10⁶ neurones / minute

= cible thérapeutique

POURQUOI SIMPLIFIER ?

Protocole d'Helsinki

délai intrahospitalier médian tPA IV: 20' (14-32)

- scanner sans pdc

- angioscanner / perfusion: <1/3 patients

Protocole d'Helsinki à Melbourne

délai intrahospitalier: **25'** (19-48) >80% avec angioscanner+perfusion

Meretoja et al. Neurology. 2013;81:1071-1076.

IMAGERIE DE PERFUSION: POST-TRAITEMENT COMPLEXE

Lisa Willats^a* and Fernando Calamante^{a,b}

IMAGERIE DE PERFUSION: POST-TRAITEMENT COMPLEXE

Special issue review article

Received: 1 February 2012,

Revised: 29 March 2012,

Accepted: 1 June 2012,

Published online in Wiley Online Library: 11 July 2012

(wileyonlinelibrary.com) DOI: 10.1002/nbm.2833

The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI

Original Paper

Cerebrovasc Dis 2010;29:592–596 DOI: 10.1159/000311080 Received: December 14, 2009 Accepted: February 2, 2010 Published online: April 14, 2010

Visual Assessment of Perfusion-Diffusion Mismatch Is Inadequate to Select Patients for Thrombolysis

Bruce C.V. Campbell^{a, b} Søren Christensen^b Sarah J. Foster^b Patricia M. Desmond^b Mark W. Parsons^d Kenneth S. Butcher^f P. Alan Barber^g Christopher R. Levi^d Christopher F. Bladin^e Geoffrey A. Donnan^c Stephen M. Davis^a for the EPITHET Investigators

IMAGERIE DE PERFUSION: POST-TRAITEMENT COMPLEXE

Special issue review article

Received: 1 February 2012,

Revised: 29 March 2012,

Accepted: 1 June 2012,

Published online in Wiley Online Library: 11 July 2012

(wileyonlinelibrary.com) DOI: 10.1002/nbm.2833

The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI

CBV, CBF, MTT,

 T_{max} maps

Patricia M. Desmond^b Mark W. Parsons^d Kenneth S. Butcher^f P. Alan Barber^g Christopher R. Levi^d Christopher F. Bladin^e Geoffrey A. Donnan^c Stephen M. Davis^a for the EPITHET Investigate

Mismatch summary

maps

IRM DE PERFUSION: SEUILLAGE NÉCESSAIRE

PET-CBF PW-Tmax

Etudes TEP - IRM:

correspondance entre les paramètres IRM et le qCBF de la TEP

$\begin{array}{c} \text{sec} \\ \text{-8.0} \\ \text{-6.0} \\ \text{-4.0} \\ \text{-2.0} \end{array}$

Etudes IRM longitudinales:

seuils IRM de perfusion et prédiction de l'infarctus final

Précision similaire entre la plupart des paramètres IRM

rTTP: 4-5 s MTT: 5-6 s

T_{max}: 5-6 s

Takasawa et al. Stroke. 2008;39:870-7. Christensen et al. Stroke. 2009;40:2055-61. Olivot et al. Stroke. 2009;40:469-75. Zaro-Weber et al. Stroke. 2010;41:2817-21.

- expertise pluridisciplinaire requise pour aller vite
- estimation du tissu à risque: post-traitement chronophage et/ou coûteux
- difficile à généraliser sur l'ensemble d'un territoire (UNV périphériques, SAU, CHU...)
- scanner de perfusion & IRM de diffusion: intérêt incertain < 6 h</p>

N=1764 patients

- 7 essais (MR CLEAN, EXTEND-IA, ESCAPE, SWIFT PRIME, REVASCAT, PISTE, THRACE)
- Critère d'inclusion en imagerie:
 - score ASPECTS \geq 6-7
 - pas de critère sur l'estimation du tissu à risque (sauf EXTEND-IA, N=70)
- Scanner de perfusion: N=591 (34%)
- IRM de diffusion: N=309 (18%)

IMPORTANCE DU "CORE" ISCHÉMIQUE

- Etendue du core ischémique associé à un risque accru de handicap
 ↗ 10 mL core (scanner perfusion): OR mRS 0-2 = 0.77 (0.69-0.86)

 ⑦ 10 mL core ~ +30 min délai imagerie-reperfusion
- Bénéfice de la thrombectomie pour volumes > 70-100 mL
- Patients sans mismatch (N=34; 6%): pas de bénéfice de la thrombectomie
- Patients reperfusés (TICI 2b-3): âge, volume core, délai imagerie-reperfusion associés au pronostic fonctionnel

APPROCHES SIMPLIFIÉES: MISMATCH ARM-DIFFUSION

- occlusion proximale & DWI < 25 mL
 occlusion distale & DWI < 15 mL
- occlusion M1 & DWI < 50 mL</p>
- occlusion ACI ou M1 & DWI-ASPECTS ≥ 6
- DAWN: ACI-T ou M1 & "core" < 21-51 mL</p>

Lansberg et al. Stroke. 2008;39:2491-2496. Mishra et al. Stroke. 2014;45:1369-1374. Deguchi et al. J Stroke Cerebrovasc Dis. 2014;23:1471-1476. Nogueira et al. N Engl J Med. 2018;378:11-21.

Score NIHSS ≥ 8 & DWI ≤ 25 mL

- identification des personnes avec risque accru de détérioration neurologique précoce et de croissance lésionnelle
- spécificité 93%, sensibilité 53% pour détection mismatch perfusion-diffusion

Dávalos et al. Neurology. 2004;62:2187-2192. Prosser et al. Stroke. 2005;36:1700-1704.

Thrombolyse IV (occlusions proximales et distales)

- Mismatch perfusion-diffusion plus précis que le m. clinique-diffusion
- Pas d'impact du mismatch clinique-diffusion sur l'évolution clinique ni croissance lésionnelle (étude contrôlée EPITHET)

Lansberg et al. Stroke. 2007;38:1826-1830. Ebinger et al. Stroke. 2009;40:2572-2574.

- Occlusions proximales: approche utilisée dans DAWN
 - âge \ge 80 ans: NIHSS \ge 10 & core < 21 mL
 - âge < 80 ans: NIHSS \geq 10 & core < 31 mL ou NIHSS \geq 20 & core < 51 mL

Nogueira et al. N Engl J Med. 2018;378:11-21.

APPROCHES SIMPLIFIÉES: COLLATÉRALES EN ANGIOSCANNER

Critère d'exclusion dans l'étude ESCAPE: Collatérales corticales visibles < 50% territoire ACM (vs côté sain) Menon et al. Radiology. 2015;275:510-520.

Goyal et al. N Engl J Med. 2015;372:1019-30.

- Etude cas témoins
- Artériographie directe si NIHSS >10 et salle angio disponible sans délai
- Angio rotationnelle pour exclure hématomes
- Cas: N= 79
- Témoins: N=145, appariement pour l'âge, score NIHSS, niveau d'occlusion, délai symptômes-admission

REPERFUSION CÉRÉBRALE EN 2019

- Occlusions distales: tPA IV
 - <4h30
 - absence d'horaire mais présence d'un mismatch FLAIR-DWI
- Occlusions proximales (M1): tPA IV + thrombectomie
 - core ischémique limité (< 1/3 territoire ACM)
 - certains patients entre 6-24h: sélection par scanner de perfusion/IRM de diffusion
 - thrombectomie seule si contre-indication au tPA

CONCLUSION: IMAGERIE "MINIMALE"

- Suffisante pour la majorité des situations cliniques < 6 h
- Imagerie de perfusion à réserver pour certaines situations:
 - déficit d'horaire inconnu et occlusion proximale
 - déficit > 6 h et occlusion proximale

hémiplégie D, aphasie

Scanner sans injection de pdc 1h10 du début des symptômes

hémiplégie D, aphasie

Un autre cas très facile...

H 87 ans "Malaise", PF centrale G isolée Admission aux urgences sans régulation 15 IRM faite depuis urgences >4h30

H 87 ans "Malaise", PF centrale G isolée Admission aux urgences sans régulation 15 IRM faite depuis urgences >4h30

IRM considérée comme sans argument pour un AVC Méningiome ARM cervicale prévue initialement non faite Avis neurochirurgical demandé

IRM de perfusion:

Détection aisée des occlusions distales

(autre patient)